Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397478

RESUMO

The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.


Assuntos
Avena , Eucariotos , Animais , Camundongos , Arginina , Avena/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Eucariotos/metabolismo , Heme/metabolismo , Histidina , Transportadores de Ânions Orgânicos
2.
J Fungi (Basel) ; 8(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36294581

RESUMO

The formation of fruiting bodies is a highly regulated process that requires the coordinated formation of different cell types. By analyzing developmental mutants, many developmental factors have already been identified. Yet, a complete understanding of fruiting body formation is still lacking. In this study, we analyzed developmental mutant pro34 of the filamentous ascomycete Sordaria macrospora. Genome sequencing revealed a deletion in the pro34 gene encoding a putative mitochondrial complex I assembly factor homologous to Neurospora crassa CIA84. We show that PRO34 is required for fast vegetative growth, fruiting body and ascospore formation. The pro34 transcript undergoes adenosine to inosine editing, a process correlated with sexual development in fruiting body-forming ascomycetes. Fluorescence microscopy and western blot analysis showed that PRO34 is a mitochondrial protein, and blue-native PAGE revealed that the pro34 mutant lacks mitochondrial complex I. Inhibitor experiments revealed that pro34 respires via complexes III and IV, but also shows induction of alternative oxidase, a shunt pathway to bypass complexes III and IV. We discuss the hypothesis that alternative oxidase is induced to prevent retrograde electron transport to complex I intermediates, thereby protecting from oxidative stress.

3.
Biochim Biophys Acta Bioenerg ; 1863(6): 148568, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533726

RESUMO

The filamentous ascomycete Podospora anserina is a well-established model system to study organismic aging. Its senescence syndrome has been investigated for more than fifty years and turned out to have a strong mitochondrial etiology. Several different mitochondrial pathways were demonstrated to affect aging and lifespan. Here, we present an update of the literature focusing on the cooperative interplay between different processes.


Assuntos
Podospora , Longevidade , Mitocôndrias/metabolismo , Podospora/metabolismo
4.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159328

RESUMO

The maintenance of cellular homeostasis over time is essential to avoid the degeneration of biological systems leading to aging and disease. Several interconnected pathways are active in this kind of quality control. One of them is autophagy, the vacuolar degradation of cellular components. The absence of the sorting nexin PaATG24 (SNX4 in other organisms) has been demonstrated to result in impairments in different types of autophagy and lead to a shortened lifespan. In addition, the growth rate and the size of vacuoles are strongly reduced. Here, we report how an oleic acid diet leads to longevity of the wild type and a PaAtg24 deletion mutant (ΔPaAtg24). The lifespan extension is linked to altered membrane trafficking, which abrogates the observed autophagy defects in ΔPaAtg24 by restoring vacuole size and the proper localization of SNARE protein PaSNC1. In addition, an oleic acid diet leads to an altered use of the mitochondrial respiratory chain: complex I and II are bypassed, leading to reduced reactive oxygen species (ROS) production. Overall, our study uncovers multiple effects of an oleic acid diet, which extends the lifespan of P. anserina and provides perspectives to explain the positive nutritional effects on human aging.


Assuntos
Podospora , Autofagia , Metabolismo Energético , Humanos , Longevidade , Mitocôndrias/metabolismo , Ácido Oleico/metabolismo
5.
Cells ; 10(10)2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685755

RESUMO

Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Homeostase , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Podospora/crescimento & desenvolvimento , Podospora/metabolismo , Cardiolipinas/metabolismo , Fermentação/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Deleção de Genes , Glicerol/farmacologia , Homeostase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Podospora/efeitos dos fármacos , Podospora/genética , Proteólise/efeitos dos fármacos
6.
Front Cell Dev Biol ; 9: 616520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748105

RESUMO

Organismic aging is known to be controlled by genetic and environmental traits. Pathways involved in the control of cellular metabolism play a crucial role. Previously, we identified a role of PaCLPP, a mitochondrial matrix protease, in the control of the mitochondrial energy metabolism, aging, and lifespan of the fungal aging model Podospora anserina. Most surprisingly, we made the counterintuitive observation that the ablation of this component of the mitochondrial quality control network leads to lifespan extension. In the current study, we investigated the role of energy metabolism of P. anserina. An age-dependent metabolome analysis of the wild type and a PaClpP deletion strain verified differences and changes of various metabolites in cultures of the PaClpP mutant and the wild type. Based on these data, we generated and analyzed a PaSnf1 deletion mutant and a ΔPaSnf1/ΔPaClpP double mutant. In both mutants PaSNF1, the catalytic α-subunit of AMP-activated protein kinase (AMPK) is ablated. PaSNF1 was found to be required for the development of fruiting bodies and ascospores and the progeny of sexual reproduction of this ascomycete and impact mitochondrial dynamics and autophagy. Most interestingly, while the single PaSnf1 deletion mutant is characterized by a slight lifespan increase, simultaneous deletion of PaSnf1 and PaClpP leads to a pronounced lifespan extension. This synergistic effect is strongly reinforced in the presence of the mating-type "minus"-linked allele of the rmp1 gene. Compared to the wild type, culture temperature of 35°C instead of the standard laboratory temperature of 27°C leads to a short-lived phenotype of the ΔPaSnf1/ΔPaClpP double mutant. Overall, our study provides novel evidence for complex interactions of different molecular pathways involved in mitochondrial quality control, gene expression, and energy metabolism in the control of organismic aging.

7.
Mech Ageing Dev ; 186: 111211, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32007577

RESUMO

Sorting nexins are a conserved protein family involved in vesicle transport, membrane trafficking and protein sorting. The sorting nexin ATG24/SNX4 has been demonstrated to be involved in different autophagy pathways and in endosomal trafficking. However, its impact on cellular quality control and on aging and development is still elusive. Here we report studies analyzing the function of PaATG24 in the aging model Podospora anserina. Ablation of PaATG24 leads to a reduced growth rate, infertility, and to a pronounced lifespan reduction. These characteristics are accompanied by alterations of the morphology and size distribution of vacuoles and severe impairments in non-selective and selective autophagy of peroxisomes (pexophagy) and mitochondria (mitophagy). While general autophagy and pexophagy are almost completely blocked, a PaATG24-independent form of mitophagy is induced during aging. In the ΔPaAtg24 mutant a strong accumulation of peroxisomes occurs while mitochondrial abundance is only slightly increased. These mitochondria are partially affected in function. Most strikingly, although some PaATG24-independent mitophagy exists, it appears that this is not sufficient to remove dysfunctional mitochondria efficiently enough to prevent premature aging. Overall our data emphasize the key role of mitochondria in aging and of mitophagy in quality control to keep a population of "healthy" mitochondria during aging.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Macroautofagia/fisiologia , Podospora/fisiologia , Nexinas de Classificação/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Modelos Biológicos
8.
Methods Mol Biol ; 2074: 45-55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31583629

RESUMO

The integration of the available experimental data represents a main problem in systems biology. In particular, in medical sciences, many new data became available, but often data are incomplete and of different quality and quantity. Here, we describe a method for the automatic derivation of protein-protein interaction networks based on homology search, which is applicable to arbitrary pathways and species. We implemented the method as a freely available open-source R package. To demonstrate the application of the method, we consider the autophagy pathway in the filamentous fungus Podospora anserina, which represents an established model organism to unravel the mechanisms of biological aging. Further, we apply network analysis methods to prove the reliability of the network.


Assuntos
Proteínas Fúngicas/metabolismo , Podospora/metabolismo , Envelhecimento/fisiologia , Autofagia , Proteínas Fúngicas/química , Podospora/fisiologia , Mapas de Interação de Proteínas
9.
Mech Ageing Dev ; 170: 45-58, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28684269

RESUMO

Gossypol, a natural polyphenolic compound from cotton seeds, is known to trigger different forms of cell death in various types of cancer. Gossypol acts as a Bcl-2 inhibitor that induces apoptosis in apoptosis-competent cells. In apoptosis-resistant cancers such as glioblastoma, it triggers a non-apoptotic type of cell death associated with increased oxidative stress, mitochondrial depolarisation and fragmentation. In order to investigate the impact of gossypol on mitochondrial function, the mitochondrial permeability transition pore and on oxidative stress in more detail, we used the aging model Podospora anserina that lacks endogenous Bcl-2 proteins. We found that treatment with gossypol selectively increases hydrogen peroxide levels and impairs mitochondrial respiration in P. anserina, apoptosis-deficient Bax/Bak double knockout mouse embryonal fibroblasts and glioblastoma cells. Significantly, we provide evidence that CYPD-mediated opening of the mPTP is required for gossypol-induced mitochondrial dysfunction, autophagy and cell death during organismic aging of P. anserina and in glioblastoma cells. Overall, these data provide new insights into the role of the mPTP and autophagy in the antitumor effects of gossypol, a natural compound that is clinically developed for the treatment of cancer.


Assuntos
Autofagia/efeitos dos fármacos , Glioblastoma/metabolismo , Gossipol/farmacologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Linhagem Celular , Fibroblastos/metabolismo , Fibroblastos/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Poro de Transição de Permeabilidade Mitocondrial , Podospora/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Autophagy ; 13(6): 1037-1052, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368682

RESUMO

Mitochondrial dysfunction is causatively linked to organismal aging and the development of degenerative diseases. Here we describe stress-dependent opposing roles of mitophagy, the selective autophagic degradation of mitochondria, in aging and life-span control. We report that the ablation of the mitochondrial superoxide dismutase which is involved in reactive oxygen species (ROS) balancing, does not affect life span of the fungal aging model Podospora anserina, although superoxide levels are strongly increased and complex I-dependent respiration is impaired. This unexpected phenotype depends on functional autophagy, particularly mitophagy, which is upregulated during aging of this mutant. It identifies mitophagy as a prosurvival response involved in the control of mitohormesis, the well-known beneficial effect of mild mitochondrial oxidative stress. In contrast, excessive superoxide stress turns mitophagy to a prodeath pathway and leads to accelerated aging. Overall our data uncover mitophagy as a dynamic pathway that specifically responds to different levels of mitochondrial oxidative stress and thereby affects organismal aging.


Assuntos
Mitofagia , Podospora/metabolismo , Podospora/fisiologia , Estresse Fisiológico , Autofagia , Biomarcadores/metabolismo , Morte Celular , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Homeostase , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitofagia/genética , Modelos Biológicos , Oxirredução , Estresse Oxidativo , Fenótipo , Podospora/citologia , Podospora/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Superóxidos/metabolismo , Transcrição Gênica , Regulação para Cima/genética
11.
Methods Mol Biol ; 1563: 19-31, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28324599

RESUMO

We describe a method for the three-dimensional live imaging of filamentous fungi with light sheet-based fluorescence microscopy (LSFM). LSFM provides completely new opportunities to investigate the biology of fungal cells and other microorganisms with high spatial and temporal resolution. As an example, we study the established aging model Podospora anserina. The protocol explains the mounting of the live fungi for the light sheet imaging, the imaging procedure and illustrates basic image processing of data.


Assuntos
Fungos/citologia , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/instrumentação , Microscopia de Fluorescência/instrumentação , Software
12.
BMC Bioinformatics ; 18(1): 196, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347269

RESUMO

BACKGROUND: Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. RESULTS: We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. CONCLUSIONS: With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables further specific studies to understand autophagy and aging in P. anserina as well as in other systems.


Assuntos
Envelhecimento/genética , Autofagia/genética , Podospora/genética , Humanos
13.
Front Genet ; 7: 165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27683587

RESUMO

The mitochondrial permeability transition pore plays a key role in programmed cell death and the induction of autophagy. Opening of the pore is regulated by the mitochondrial peptidyl prolyl-cis, trans-isomerase cyclophilin D (CYPD). Previously it was shown in the aging model organism Podospora anserina that PaCYPD abundance increases during aging and that PaCypD overexpressors are characterized by accelerated aging. Here, we describe a role of PaCYPD in the regulation of autophagy. We found that the accelerated aging phenotype observed in a strain overexpressing PaCypD is not metacaspase-dependent but is accompanied by an increase of general autophagy and mitophagy, the selective autophagic degradation of mitochondria. It thus is linked to what has been defined as "autophagic cell death" or "type II" programmed cell death. Moreover, we found that the previously demonstrated age-related induction of autophagy in wild-type aging depends on the presence of PaCYPD. Deletion of PaCypD leads to a decrease in autophagy in later stages of age and under paraquat-mediated oxidative stress. Finally, we report that PaCYPD is also required for mitohormesis, the beneficial effect of mild mitochondrial stress. Thus, PaCYPD plays a key role in the context-dependent regulation of pathways leading to pro-survival and pro-death effects of autophagy.

14.
Mol Cell Proteomics ; 15(5): 1692-709, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26884511

RESUMO

The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a protein damage homeostasis mechanism even at late age.


Assuntos
Proteínas Fúngicas/análise , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Podospora/fisiologia , Proteômica/métodos , Cromatografia Líquida , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Homeostase , Marcação por Isótopo , Metionina/química , Proteínas Mitocondriais/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
15.
Curr Opin Microbiol ; 22: 1-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25299751

RESUMO

Time-dependent impairments of mitochondrial function play a key role in biological aging. Work on fungal aging models has been instrumental in unraveling basic mechanisms leading to mitochondrial dysfunction and the identification of different pathways active in keeping mitochondria 'healthy' over time. Pathways including those involved in reactive oxygen scavenging, repair of damage, proteostasis, mitochondrial dynamics, and biogenesis, are interconnected and part of a complex quality control system. The individual components of this network are limited in capacity. However, if the capacity of one pathway is overwhelmed, another one may be activated. The mechanisms controlling the underlying cross-talk are poorly understood and subject of intensive investigation.


Assuntos
Fungos/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Apoptose , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Metabolismo Energético , Dinâmica Mitocondrial , Consumo de Oxigênio , Processamento de Proteína Pós-Traducional
16.
Autophagy ; 10(5): 822-34, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24584154

RESUMO

The filamentous ascomycete Podospora anserina is a well-established aging model in which a variety of different pathways, including those involved in the control of respiration, ROS generation and scavenging, DNA maintenance, proteostasis, mitochondrial dynamics, and programmed cell death have previously been demonstrated to affect aging and life span. Here we address a potential role of autophagy. We provide data demonstrating high basal autophagy levels even in strains cultivated under noninduced conditions. By monitoring an N-terminal fusion of EGFP to the fungal LC3 homolog PaATG8 over the lifetime of the fungus on medium with and without nitrogen supplementation, respectively, we identified a significant increase of GFP puncta in older and in nitrogen-starved cultures suggesting an induction of autophagy during aging. This conclusion is supported by the demonstration of an age-related and autophagy-dependent degradation of a PaSOD1-GFP reporter protein. The deletion of Paatg1, which leads to the lack of the PaATG1 serine/threonine kinase active in early stages of autophagy induction, impairs ascospore germination and development and shortens life span. Under nitrogen-depleted conditions, life span of the wild type is increased almost 4-fold. In contrast, this effect is annihilated in the Paatg1 deletion strain, suggesting that the ability to induce autophagy is beneficial for this fungus. Collectively, our data identify autophagy as a longevity-assurance mechanism in P. anserina and as another surveillance pathway in the complex network of pathways affecting aging and development. These findings provide perspectives for the elucidation of the mechanisms involved in the regulation of individual pathways and their interactions.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Longevidade/fisiologia , Modelos Biológicos , Podospora/fisiologia , Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Longevidade/efeitos dos fármacos , Nitrogênio/deficiência , Nitrogênio/farmacologia , Organismos Geneticamente Modificados , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Podospora/efeitos dos fármacos , Proteólise
17.
Exp Gerontol ; 56: 13-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24556281

RESUMO

The mitochondrial free radical theory of aging (MFRTA) states that reactive oxygen species (ROS) generated at the respiratory electron transport chain are active in causing age-related damage of biomolecules like lipids, nucleic acids and proteins. Accumulation of this kind of damage results in functional impairments, aging and death of biological systems. Here we report data of an analysis to monitor the age-related quantitative protein composition of the mitochondria of the fungal aging model Podospora anserina. The impact of senescence on mitochondrial protein composition was analyzed by LC-MS. In an untargeted proteomic approach, we identified 795 proteins in samples from juvenile and senescent wild-type cultures and obtained quantitative information for 226 of these proteins by spectral counting. Despite the broad coverage of the proteome, no substantial changes in known age-related pathways could be observed. For a more detailed analysis, a targeted proteome analysis was applied focusing on 15 proteins from respiratory, ROS-scavenging and quality control pathways. Analyzing six distinct age-stages from juvenile to senescent P. anserina cultures revealed low, but statistically significant changes for the mitochondrial respiratory complexes. A P. anserina PaSod3 over-expression mutant with a phenotype of mitochondrial ROS over-production was used for biological evaluation of changes observed during aging. LC-MS analysis of the mutant revealed severe changes to the mitochondrial proteome--substantially larger than observed during senescence. Interestingly the amount of ATP synthase subunit g, involved in cristae formation is significantly decreased in the mutant implicating ROS-induced impairments in ATP synthase dimer and cristae formation. The difference between protein-profiles of aging wild type and ROS stressed mutant suggests that oxidative stress within the mitochondria is not the dominating mechanism for the aging process in P. anserina. Collectively, while our data do not exclude an effect of ROS on specific proteins and in signaling and control of pathways which are governing aging of P. anserina, it contradicts increasing ROS as a cause of a gross general and non-selective accumulation of damaged proteins during senescence. Instead, ROS may be effective by controlling specific regulators of mitochondrial function.


Assuntos
Envelhecimento/metabolismo , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Podospora/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Cromatografia de Fase Reversa , Proteínas Fúngicas/genética , Genótipo , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Podospora/genética , Podospora/crescimento & desenvolvimento , Proteômica/métodos , Transdução de Sinais , Espectrometria de Massas em Tandem
18.
PLoS One ; 8(12): e83109, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376646

RESUMO

Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations.


Assuntos
Envelhecimento/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Podospora/genética , Transcriptoma , Envelhecimento/metabolismo , Autofagia/genética , Cobre/metabolismo , Metabolismo Energético , Proteínas Fúngicas/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Anotação de Sequência Molecular , Podospora/metabolismo , Ribossomos/metabolismo , Fatores de Tempo
19.
J Proteomics ; 91: 358-74, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23872087

RESUMO

Many questions concerning the molecular processes during biological aging remain unanswered. Since mitochondria are central players in aging, we applied quantitative two-dimensional difference gel electrophoresis (2D-DIGE) coupled to protein identification by mass spectrometry to study the age-dependent changes in the mitochondrial proteome of the fungus Podospora anserina - a well-established aging model. 67 gel spots exhibited significant, but remarkably moderate intensity changes. While typically the observed changes in protein abundance occurred progressively with age, for several proteins a pronounced change was observed at late age, sometimes inverting the trend observed at younger age. The identified proteins were assigned to a wide range of metabolic pathways including several implicated previously in biological aging. An overall decrease for subunits of complexes I and V of oxidative phosphorylation was confirmed by Western blot analysis and blue-native electrophoresis. Changes in several groups of proteins suggested a general increase in protein biosynthesis possibly reflecting a compensatory mechanism for increased quality control-related protein degradation at later age. Age-related augmentation in abundance of proteins involved in biosynthesis, folding, and protein degradation pathways sustain these observations. Furthermore, a significant decrease of two enzymes involved in the degradation of γ-aminobutyrate (GABA) supported its previously suggested involvement in biological aging. BIOLOGICAL SIGNIFICANCE: We have followed the time course of changes in protein abundance during aging of the fungus P. anserina. The observed moderate but significant changes provide insight into the molecular adaptations to biological aging and highlight the metabolic pathways involved, thereby offering new leads for future research.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Podospora/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Estresse Oxidativo , Oxigênio/química , Fosforilação , Proteômica , Espectrometria de Massas em Tandem , Fatores de Tempo , Tripsina/química , Eletroforese em Gel Diferencial Bidimensional , Ácido gama-Aminobutírico/metabolismo
20.
Hum Mol Genet ; 22(24): 4871-87, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23851121

RESUMO

The caseinolytic peptidase P (CLPP) is conserved from bacteria to humans. In the mitochondrial matrix, it multimerizes and forms a macromolecular proteasome-like cylinder together with the chaperone CLPX. In spite of a known relevance for the mitochondrial unfolded protein response, its substrates and tissue-specific roles are unclear in mammals. Recessive CLPP mutations were recently observed in the human Perrault variant of ovarian failure and sensorineural hearing loss. Here, a first characterization of CLPP null mice demonstrated complete female and male infertility and auditory deficits. Disrupted spermatogenesis already at the spermatid stage and ovarian follicular differentiation failure were evident. Reduced pre-/post-natal survival and marked ubiquitous growth retardation contrasted with only light impairment of movement and respiratory activities. Interestingly, the mice showed resistance to ulcerative dermatitis. Systematic expression studies detected up-regulation of other mitochondrial chaperones, accumulation of CLPX and mtDNA as well as inflammatory factors throughout tissues. T-lymphocytes in the spleen were activated. Thus, murine Clpp deletion represents a faithful Perrault model. The disease mechanism probably involves deficient clearance of mitochondrial components and inflammatory tissue destruction.


Assuntos
DNA Mitocondrial/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Transtornos do Crescimento/genética , Perda Auditiva/genética , Infertilidade/genética , Mediadores da Inflamação/metabolismo , Animais , Respiração Celular/genética , Modelos Animais de Doenças , Feminino , Ordem dos Genes , Gônadas/metabolismo , Gônadas/patologia , Transtornos do Crescimento/metabolismo , Perda Auditiva/metabolismo , Infertilidade/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Atividade Motora/genética , Mutação , Fenótipo , Baço/citologia , Baço/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...